Introduction to Data Science

Introduction to Data Science
Author :
Publisher : CRC Press
Total Pages : 836
Release :
ISBN-10 : 9781000708035
ISBN-13 : 1000708039
Rating : 4/5 (35 Downloads)

Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.


Introduction to Data Science Related Books

Introduction to Data Science
Language: en
Pages: 836
Authors: Rafael A. Irizarry
Categories: Mathematics
Type: BOOK - Published: 2019-11-20 - Publisher: CRC Press

DOWNLOAD EBOOK

Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis ch
Practical Statistics for Data Scientists
Language: en
Pages: 322
Authors: Peter Bruce
Categories: Computers
Type: BOOK - Published: 2017-05-10 - Publisher: "O'Reilly Media, Inc."

DOWNLOAD EBOOK

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics r
Introduction to Data Science
Language: en
Pages: 227
Authors: Laura Igual
Categories: Computers
Type: BOOK - Published: 2017-02-22 - Publisher: Springer

DOWNLOAD EBOOK

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science
Introduction to Data Analysis and Graphical Presentation in Biostatistics with R
Language: en
Pages: 172
Authors: Thomas W. MacFarland
Categories: Medical
Type: BOOK - Published: 2013-11-19 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Through real-world datasets, this book shows the reader how to work with material in biostatistics using the open source software R. These include tools that ar
An Introduction to Statistical Learning
Language: en
Pages: 617
Authors: Gareth James
Categories: Mathematics
Type: BOOK - Published: 2023-08-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast