Machine Learning for Finance
Author | : Jannes Klaas |
Publisher | : Packt Publishing Ltd |
Total Pages | : 457 |
Release | : 2019-05-30 |
ISBN-10 | : 9781789134698 |
ISBN-13 | : 1789134692 |
Rating | : 4/5 (98 Downloads) |
Download or read book Machine Learning for Finance written by Jannes Klaas and published by Packt Publishing Ltd. This book was released on 2019-05-30 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to advances in machine learning for financial professionals, with working Python code Key FeaturesExplore advances in machine learning and how to put them to work in financial industriesClear explanation and expert discussion of how machine learning works, with an emphasis on financial applicationsDeep coverage of advanced machine learning approaches including neural networks, GANs, and reinforcement learningBook Description Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including in insurance, transactions, and lending. It explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself. The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on the advanced ML concepts and ideas that can be applied in a wide variety of ways. The book shows how machine learning works on structured data, text, images, and time series. It includes coverage of generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. It discusses how to fight bias in machine learning and ends with an exploration of Bayesian inference and probabilistic programming. What you will learnApply machine learning to structured data, natural language, photographs, and written textHow machine learning can detect fraud, forecast financial trends, analyze customer sentiments, and moreImplement heuristic baselines, time series, generative models, and reinforcement learning in Python, scikit-learn, Keras, and TensorFlowDig deep into neural networks, examine uses of GANs and reinforcement learningDebug machine learning applications and prepare them for launchAddress bias and privacy concerns in machine learningWho this book is for This book is ideal for readers who understand math and Python, and want to adopt machine learning in financial applications. The book assumes college-level knowledge of math and statistics.