Relative Equilibria of the Curved N-Body Problem

Relative Equilibria of the Curved N-Body Problem
Author :
Publisher : Springer Science & Business Media
Total Pages : 146
Release :
ISBN-10 : 9789491216688
ISBN-13 : 9491216686
Rating : 4/5 (88 Downloads)

Book Synopsis Relative Equilibria of the Curved N-Body Problem by : Florin Diacu

Download or read book Relative Equilibria of the Curved N-Body Problem written by Florin Diacu and published by Springer Science & Business Media. This book was released on 2012-08-17 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The guiding light of this monograph is a question easy to understand but difficult to answer: {What is the shape of the universe? In other words, how do we measure the shortest distance between two points of the physical space? Should we follow a straight line, as on a flat table, fly along a circle, as between Paris and New York, or take some other path, and if so, what would that path look like? If you accept that the model proposed here, which assumes a gravitational law extended to a universe of constant curvature, is a good approximation of the physical reality (and I will later outline a few arguments in this direction), then we can answer the above question for distances comparable to those of our solar system. More precisely, this monograph provides a mathematical proof that, for distances of the order of 10 AU, space is Euclidean. This result is, of course, not surprising for such small cosmic scales. Physicists take the flatness of space for granted in regions of that size. But it is good to finally have a mathematical confirmation in this sense. Our main goals, however, are mathematical. We will shed some light on the dynamics of N point masses that move in spaces of non-zero constant curvature according to an attraction law that naturally extends classical Newtonian gravitation beyond the flat (Euclidean) space. This extension is given by the cotangent potential, proposed by the German mathematician Ernest Schering in 1870. He was the first to obtain this analytic expression of a law suggested decades earlier for a 2-body problem in hyperbolic space by Janos Bolyai and, independently, by Nikolai Lobachevsky. As Newton's idea of gravitation was to introduce a force inversely proportional to the area of a sphere the same radius as the Euclidean distance between the bodies, Bolyai and Lobachevsky thought of a similar definition using the hyperbolic distance in hyperbolic space. The recent generalization we gave to the cotangent potential to any number N of bodies, led to the discovery of some interesting properties. This new research reveals certain connections among at least five branches of mathematics: classical dynamics, non-Euclidean geometry, geometric topology, Lie groups, and the theory of polytopes.


Relative Equilibria of the Curved N-Body Problem Related Books

Relative Equilibria of the Curved N-Body Problem
Language: en
Pages: 146
Authors: Florin Diacu
Categories: Mathematics
Type: BOOK - Published: 2012-08-17 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The guiding light of this monograph is a question easy to understand but difficult to answer: {What is the shape of the universe? In other words, how do we meas
Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem
Language: en
Pages: 92
Authors: Florin Diacu
Categories: Mathematics
Type: BOOK - Published: 2014-03-05 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

Considers the 3 -dimensional gravitational n -body problem, n32 , in spaces of constant Gaussian curvature k10 , i.e. on spheres S 3 ?1 , for ?>0 , and on hyper
Periodic Solutions of the N-Body Problem
Language: en
Pages: 149
Authors: Kenneth R. Meyer
Categories: Mathematics
Type: BOOK - Published: 2006-11-17 - Publisher: Springer

DOWNLOAD EBOOK

The N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduct
Periodic Solutions of the N-Body Problem
Language: en
Pages: 172
Authors: Kenneth R. Meyer
Categories: Mathematics
Type: BOOK - Published: 1999-11-17 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Lecture Notes in Mathematics This series reports on new developments in mathematical research and teaching - quickly, informally and at a high level. The type o
Equadiff 99 (In 2 Volumes) - Proceedings Of The International Conference On Differential Equations
Language: en
Pages: 838
Authors: Bernold Fiedler
Categories: Mathematics
Type: BOOK - Published: 2000-09-05 - Publisher: World Scientific

DOWNLOAD EBOOK

This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical sys