Computing Rare-event Probabilities for Affine Models and General State Space Markov Processes

Computing Rare-event Probabilities for Affine Models and General State Space Markov Processes
Author :
Publisher : Stanford University
Total Pages : 129
Release :
ISBN-10 : STANFORD:ny328vh8662
ISBN-13 :
Rating : 4/5 (62 Downloads)

Book Synopsis Computing Rare-event Probabilities for Affine Models and General State Space Markov Processes by : Xiaowei Zhang

Download or read book Computing Rare-event Probabilities for Affine Models and General State Space Markov Processes written by Xiaowei Zhang and published by Stanford University. This book was released on 2011 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rare-event simulation concerns computing small probabilities, i.e. rare-event probabilities. This dissertation investigates efficient simulation algorithms based on importance sampling for computing rare-event probabilities for different models, and establishes their efficiency via asymptotic analysis. The first part discusses asymptotic behavior of affine models. Stochastic stability of affine jump diffusions are carefully studied. In particular, positive recurrence, ergodicity, and exponential ergodicity are established for such processes under various conditions via a Foster-Lyapunov type approach. The stationary distribution is characterized in terms of its characteristic function. Furthermore, the large deviations behavior of affine point processes are explicitly computed, based on which a logarithmically efficient importance sampling algorithm is proposed for computing rare-event probabilities for affine point processes. The second part is devoted to a much more general setting, i.e. general state space Markov processes. The current state-of-the-art algorithm for computing rare-event probabilities in this context heavily relies on the solution of a certain eigenvalue problem, which is often unavailable in closed form unless certain special structure is present (e.g. affine structure for affine models). To circumvent this difficulty, assuming the existence of a regenerative structure, we propose a bootstrap-based algorithm that conducts the importance sampling on the regenerative cycle-path space instead of the original one-step transition kernel. The efficiency of this algorithm is also discussed.


Computing Rare-event Probabilities for Affine Models and General State Space Markov Processes Related Books

Computing Rare-event Probabilities for Affine Models and General State Space Markov Processes
Language: en
Pages: 129
Authors: Xiaowei Zhang
Categories:
Type: BOOK - Published: 2011 - Publisher: Stanford University

DOWNLOAD EBOOK

Rare-event simulation concerns computing small probabilities, i.e. rare-event probabilities. This dissertation investigates efficient simulation algorithms base
Markov Chains and Dependability Theory
Language: en
Pages: 287
Authors: Gerardo Rubino
Categories: Business & Economics
Type: BOOK - Published: 2014-06-12 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.
Basics of Applied Stochastic Processes
Language: en
Pages: 452
Authors: Richard Serfozo
Categories: Mathematics
Type: BOOK - Published: 2009-01-24 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Marko
Dissertation Abstracts International
Language: en
Pages: 862
Authors:
Categories: Dissertations, Academic
Type: BOOK - Published: 2006 - Publisher:

DOWNLOAD EBOOK

Stochastic Networks
Language: en
Pages: 233
Authors: Frank Kelly
Categories: Computers
Type: BOOK - Published: 2014-02-27 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A compact, highly-motivated introduction to some of the stochastic models found useful in the study of communications networks.