Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide

Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide
Author :
Publisher : Packt Publishing Ltd
Total Pages : 202
Release :
ISBN-10 : 9781789803198
ISBN-13 : 1789803195
Rating : 4/5 (98 Downloads)

Book Synopsis Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide by : Willem Meints

Download or read book Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide written by Willem Meints and published by Packt Publishing Ltd. This book was released on 2019-03-28 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to train popular deep learning architectures such as autoencoders, convolutional and recurrent neural networks while discovering how you can use deep learning models in your software applications with Microsoft Cognitive Toolkit Key FeaturesUnderstand the fundamentals of Microsoft Cognitive Toolkit and set up the development environment Train different types of neural networks using Cognitive Toolkit and deploy it to productionEvaluate the performance of your models and improve your deep learning skillsBook Description Cognitive Toolkit is a very popular and recently open sourced deep learning toolkit by Microsoft. Cognitive Toolkit is used to train fast and effective deep learning models. This book will be a quick introduction to using Cognitive Toolkit and will teach you how to train and validate different types of neural networks, such as convolutional and recurrent neural networks. This book will help you understand the basics of deep learning. You will learn how to use Microsoft Cognitive Toolkit to build deep learning models and discover what makes this framework unique so that you know when to use it. This book will be a quick, no-nonsense introduction to the library and will teach you how to train different types of neural networks, such as convolutional neural networks, recurrent neural networks, autoencoders, and more, using Cognitive Toolkit. Then we will look at two scenarios in which deep learning can be used to enhance human capabilities. The book will also demonstrate how to evaluate your models' performance to ensure it trains and runs smoothly and gives you the most accurate results. Finally, you will get a short overview of how Cognitive Toolkit fits in to a DevOps environment What you will learnSet up your deep learning environment for the Cognitive Toolkit on Windows and LinuxPre-process and feed your data into neural networksUse neural networks to make effcient predictions and recommendationsTrain and deploy effcient neural networks such as CNN and RNNDetect problems in your neural network using TensorBoardIntegrate Cognitive Toolkit with Azure ML Services for effective deep learningWho this book is for Data Scientists, Machine learning developers, AI developers who wish to train and deploy effective deep learning models using Microsoft CNTK will find this book to be useful. Readers need to have experience in Python or similar object-oriented language like C# or Java.


Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide Related Books

Deep Learning on Windows
Language: en
Pages: 235
Authors: Thimira Amaratunga
Categories: Computers
Type: BOOK - Published: 2021-02-25 - Publisher: Apress

DOWNLOAD EBOOK

Build deep learning and computer vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the familiar environment of Microsoft Windows. T
Deep Learning for Coders with fastai and PyTorch
Language: en
Pages: 624
Authors: Jeremy Howard
Categories: Computers
Type: BOOK - Published: 2020-06-29 - Publisher: O'Reilly Media

DOWNLOAD EBOOK

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with
Deep Learning
Language: en
Pages: 212
Authors: Li Deng
Categories: Machine learning
Type: BOOK - Published: 2014 - Publisher:

DOWNLOAD EBOOK

Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Deep Learning
Language: en
Pages: 801
Authors: Ian Goodfellow
Categories: Computers
Type: BOOK - Published: 2016-11-10 - Publisher: MIT Press

DOWNLOAD EBOOK

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and res
Pattern Recognition and Machine Learning
Language: en
Pages: 0
Authors: Christopher M. Bishop
Categories: Computers
Type: BOOK - Published: 2016-08-23 - Publisher: Springer

DOWNLOAD EBOOK

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approxi