High-performance Ge/SiGe Quantum Well Waveguide Modulators for Optical Interconnect Systems

High-performance Ge/SiGe Quantum Well Waveguide Modulators for Optical Interconnect Systems
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:795462359
ISBN-13 :
Rating : 4/5 (59 Downloads)

Book Synopsis High-performance Ge/SiGe Quantum Well Waveguide Modulators for Optical Interconnect Systems by : Stephanie Ann Claussen

Download or read book High-performance Ge/SiGe Quantum Well Waveguide Modulators for Optical Interconnect Systems written by Stephanie Ann Claussen and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical interconnects have the potential to help create faster, more powerful computers that use far less energy than they currently do. However, to accomplish this goal, key material and device design breakthroughs must first occur. This Ph. D. dissertation focuses on developing the technology for one component of future optical interconnects, the optical modulator. Ge/SiGe quantum wells exhibit the quantum-confined Stark effect, the strongest high-speed electroabsorption modulation mechanism available in a CMOS-compatible material. We begin by examining the ultrafast carrier dynamics of these quantum wells as a way to understand the fundamental limitations to optical modulators which rely on this material. Using a pump-probe experimental setup, we measured the intervalley scattering time of electrons from the direct valley to the indirect L valley in the conduction band of the germanium wells to be ~185 fs. We also measured field screening in these quantum wells and modeled its recovery through diffusive conduction within 120 ps. This improved understanding of Ge/SiGe quantum wells allowed us to design a waveguide-integrated modulator that relies on selective area growth of this material in thick silicon-on-insulator waveguides. Selective area quantum well waveguide modulators offer the potential of high contrast ratios, low operating energies, and low loss. We developed a novel growth substrate fabrication process to enable high quality selective area growth of Ge/SiGe quantum wells with minimal sidewall growth. We then fabricated selective area modulators integrated with SOI waveguides, and present here preliminary results from these devices.


High-performance Ge/SiGe Quantum Well Waveguide Modulators for Optical Interconnect Systems Related Books

High-performance Ge/SiGe Quantum Well Waveguide Modulators for Optical Interconnect Systems
Language: en
Pages:
Authors: Stephanie Ann Claussen
Categories:
Type: BOOK - Published: 2012 - Publisher:

DOWNLOAD EBOOK

Optical interconnects have the potential to help create faster, more powerful computers that use far less energy than they currently do. However, to accomplish
Ge/SiGe Quantum Well Waveguide Modulator for Optical Interconnect Systems
Language: en
Pages: 138
Authors: Ren Shen
Categories:
Type: BOOK - Published: 2011 - Publisher: Stanford University

DOWNLOAD EBOOK

Thanks to the development of silicon VLSI technology over the past several decades, we can now integrate far more transistors onto a single chip than ever befor
Ge/SiGe Quantum Well Waveguide Modulator for Optical Interconnect Systems
Language: en
Pages:
Authors: Ren Shen
Categories:
Type: BOOK - Published: 2011 - Publisher:

DOWNLOAD EBOOK

Thanks to the development of silicon VLSI technology over the past several decades, we can now integrate far more transistors onto a single chip than ever befor
Ge/SiGe Quantum Well Devices for Optical Interconnects
Language: en
Pages:
Authors: Edward T. Fei
Categories:
Type: BOOK - Published: 2014 - Publisher:

DOWNLOAD EBOOK

Increasing processing power has been at the heart of technological boom witnessed in the past few decades. However, the communication delay of electrical interc
High Speed, Low Driving Voltage Vertical Cavity Germanium-silicon Modulators for Optical Interconnect
Language: en
Pages: 116
Authors: Yiwen Rong
Categories:
Type: BOOK - Published: 2010 - Publisher: Stanford University

DOWNLOAD EBOOK

Information processing requires interconnects to carry information from one place to another. Optical interconnects between electronics systems have attracted s