Essential Statistical Inference
Author | : Dennis D. Boos |
Publisher | : Springer Science & Business Media |
Total Pages | : 567 |
Release | : 2013-02-06 |
ISBN-10 | : 9781461448181 |
ISBN-13 | : 1461448182 |
Rating | : 4/5 (81 Downloads) |
Download or read book Essential Statistical Inference written by Dennis D. Boos and published by Springer Science & Business Media. This book was released on 2013-02-06 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.