Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry
Author :
Publisher : Birkhäuser
Total Pages : 202
Release :
ISBN-10 : 9783034889384
ISBN-13 : 3034889380
Rating : 4/5 (84 Downloads)

Book Synopsis Progress in Inverse Spectral Geometry by : Stig I. Andersson

Download or read book Progress in Inverse Spectral Geometry written by Stig I. Andersson and published by Birkhäuser. This book was released on 2012-12-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.


Progress in Inverse Spectral Geometry Related Books

Progress in Inverse Spectral Geometry
Language: en
Pages: 202
Authors: Stig I. Andersson
Categories: Mathematics
Type: BOOK - Published: 2012-12-06 - Publisher: Birkhäuser

DOWNLOAD EBOOK

Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material
Spectral Geometry
Language: en
Pages: 284
Authors: Pierre H. Berard
Categories: Mathematics
Type: BOOK - Published: 2006-11-14 - Publisher: Springer

DOWNLOAD EBOOK

An Introduction to Inverse Scattering and Inverse Spectral Problems
Language: en
Pages: 206
Authors: Khosrow Chadan
Categories: Mathematics
Type: BOOK - Published: 1997-01-01 - Publisher: SIAM

DOWNLOAD EBOOK

Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theor
Spectral Theory of Infinite-Area Hyperbolic Surfaces
Language: en
Pages: 471
Authors: David Borthwick
Categories: Mathematics
Type: BOOK - Published: 2016-07-12 - Publisher: Birkhäuser

DOWNLOAD EBOOK

This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developmen
Old and New Aspects in Spectral Geometry
Language: en
Pages: 447
Authors: M.-E. Craioveanu
Categories: Mathematics
Type: BOOK - Published: 2013-03-14 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltra