Quantum Information and Computation for Chemistry, Volume 154
Author | : Sabre Kais |
Publisher | : John Wiley & Sons |
Total Pages | : 522 |
Release | : 2014-01-31 |
ISBN-10 | : 9781118742600 |
ISBN-13 | : 1118742605 |
Rating | : 4/5 (00 Downloads) |
Download or read book Quantum Information and Computation for Chemistry, Volume 154 written by Sabre Kais and published by John Wiley & Sons. This book was released on 2014-01-31 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.