Robust Recognition via Information Theoretic Learning

Robust Recognition via Information Theoretic Learning
Author :
Publisher : Springer
Total Pages : 120
Release :
ISBN-10 : 9783319074160
ISBN-13 : 3319074164
Rating : 4/5 (60 Downloads)

Book Synopsis Robust Recognition via Information Theoretic Learning by : Ran He

Download or read book Robust Recognition via Information Theoretic Learning written by Ran He and published by Springer. This book was released on 2014-08-28 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.


Robust Recognition via Information Theoretic Learning Related Books